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Abstract—In this paper, we propose a high-level Stochastic
steady-state model to analyze the value of co-located energy
storage systems for wind power producers that participate in
an electricity market through Forward or Day Ahead contracts.
In particular, we try to find optimal sizing and contracting and
stationary operating policies for profit maximization in the long-
run. We obtain a stylized model calibrated to actual wind power
production and electricity wholesale price data that allows us to
asses the value of storage size and perform sensitivity analysis on
key parameters such as contract prices, storage cost and storage
efficiency.

Index Terms—Battery Storage, Forward Contracts, Optimal
Sizing, Wind Generation

I. INTRODUCTION

The impending consequences of climate change has driven
massive proliferation of renewable energy resources (RES)
around the world. However, a key obstacle to large-scale
integration of RES in power systems is the short-term un-
certainty and variability of their output. This poses both
technical challenges for the reliable operation of the power
system and financial challenges for investors in RES, since
it is hard to guarantee a reliable income flow without RES
implicit subsidies through policies such as feed-in tariffs and
mandatory contracting for retailers. Such policies however are
not sustainable and are being challenged due to their cost to
consumers and many systems are moving toward imposing
scheduling requirements and forward commitments on RES
forcing them to compete on a level playing field with other
resources. The addition of Battery Energy Storage Systems
(BESS) to renewable power plants can help mitigate their un-
certainty and thus can help towards solving both the technical
and financial issues. While it is intuitive to understand how
storage can mitigate uncertainty, sizing and managing BESS
is not obvious.

Optimizing the sizing and operation of energy storage for
intermittent power plants has been a very active research topic
for several years, and there are numerous references of relevant
related work, both theoretical as well as in applied cases. In
[1], a theoretical analysis is performed for the case of a wind
farm that uses storage to optimize its bidding strategy on the
day-ahead market in order to minimize imbalance penalties.
In this, and other works that study the behavior of wind power
producers (WPP) in day-ahead markets [2], [3], it is observed
that the optimal bidding strategy for WPP takes the form of
an optimal fractile, in the spirit of a Newsvendor problem. In

fact, the bidding problem of a WPP is a reverse newsvendor
problem, where the uncertainty lies not on the supply side.

There are also numerous references that address the issue of
optimal sizing and optimal management of co-located energy
storage. In [4], the infinite-horizon average cost of electricity
purchases is minimized by finding an optimal storage manage-
ment policy and optimal storage size for a power plant that
serves a local demand and purchases any shortfall from the
grid in presence of dynamic pricing. The optimality of the
balancing storage management policy and the authors prove
optimality of a dual threshold policy, in the spirit of optimal
(s, S) policies for inventory. In [5], the optimal size of a BESS
is found for a grid-connected PV system that can purchase and
sell energy from the grid under time-of-use pricing, and the
convexity of profit in storage size is shown. In [6], the value of
co-located storage is analyzed for the case of the UK market as
subsidies are phased out; a comparison of participation in the
wholesale market with co-located storage vs a long-term power
purchase agreement with contracts for differences is made
with help of a model using stochastic differential equations
describing wind power production and prices.

Despite the abundance of literature in the matter, the ap-
plication of high-scale, steady state models, such as fluid
queues, to energy storage remains relatively rare. Limiting
distributions for fluid queue models have been most commonly
used in high-speed communication networks, but also for
manufacturing [7], and energy systems, with early applications
in hydro dam management models [8]. In [9], a two-state
markov-modulated fluid queue (MMFQ) is used for optimizing
the size and management policy of the national strategic
petroleum reserve (SPR).

More recently, there have been application of fluid queue
models to renewable power plants with BESS. In [10], a
model-predictive control (MPC) algorithm is proposed for
solving a joint storage configuration problem, i.e. sizing and
managing storage, and the MMFQ framework is used to
analyze the performance of the algorithm in terms of reliability
of power availability. In [11], the authors consider a case in
which there is no control over the charge/discharge rate (akin
to a balancing policy), and use MMFQ to find a relation, in
particular an asymptotic relation, between the battery size and
the loss of load probability for a given grid configuration, so
that the problem of finding the optimal size of storage to hit a
target loss-of-load probability can be solved. Unlike in these
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cases, here we use the MMFQ framework in the objective
function of our optimization model directly.

While short term operation of co-located storage can be
optimized using dynamic programming techniques and ac-
counting for current information on state of charge, wind
forecast and prices, the optimal sizing of the co-located storage
is based on long run average behavior of the production-
storage system under an optimized stationary policy. For this
purpose we employ the spectral method for characterizing
limiting distributions of n-dimensional MMFQ described in
[7], [12]. Algorithms that are more numerically stable have
been developed [13], [14], but with a limitation of a sin-
gle state with negative drift. However, this limitation is too
restrictive for our setting since it would correspond to a
single state where batteries can be discharged. In [15], an
algorithm is proposed for calculating limiting distributions of
markov-modulated fluid queues without solving an eigenvalue
problem. The algorithm has promising results in terms of
stability to obtain results of a desired precision and makes no
assumptions regarding the structure of the fluid queue, which
is a promising option for general application models like ours.

In this paper, we use limiting distributions directly to obtain
simple expressions of long-run profits of the system, suitable
for use in a sensitivity analysis. In particular, we are interested
in investigating the effect of some key parameters such as
cost of storage and available contract prices on the financial
outcome of the project, the optimal storage size and the
optimal contracting strategy of a wind power plant trying to
maximize its profit. This simple model would be of interest to
a wind power plant operator and project developer for early-
stage project feasibility analysis. It could also be of interest for
policy designers, to evaluate the financial viability of storage
projects for wind power plants with and without special
incentives, e.g. by considering tentative subsidies in the form
of reduced feed-in-tariffs for surplus generation conditional on
participation in long-term fixed quantity contracts.

II. PROBLEM SETTING

We consider the case of a WPP that participates in the
wholesale electricity market and has access to a long-term
forward market. The WPP is also evaluating the construction
of a collocated Battery Energy Storage System (BESS), which
will be used to mitigate imbalance costs. In our setting, the
wind farm operator needs to answer two main questions: how
much storage should be installed and how much energy should
be sold in a long-term contract. To answer these questions,
it is also relevant to determine a stationary management
(charge/discharge) policy for the BESS. Further aspects of our
setting are described in more detail in the paragraphs below.

We consider that the WPP is a price-taker in the long-term
forward market, where it has access to three contracts:

1) A long-term fixed quantity contract, where it can choose
how much to sell for a fixed price in every period of the
wholesale electricity market.

2) A pay-as-demanded forward contract, which can be used
to cover any shortfall in generation with respect to the
pledge in contract 1.

3) A pay-as-produced forward contract, which can be used
to sell any excess generation with respect to the pledge
in contract 1.

In order to avoid arbitrage opportunities, contract 2 must have
a higher price than 1 and contract 3 must have a lower price
than contract 1.

This setting can be seen as a special case of a WPP that
participates in the day-ahead market as described next. The
WPP can commit to generate any quantity up to its capacity.
The producer has no control over the wind power output and
the commitment is made before the actual output is known.
An imbalance penalty is paid for the difference between the
energy commitment and the actual energy delivered. The case
studied here is the special case where the commitment is the
same for all periods, the imbalance penalty for shortfall is non-
negative and constant, and the imbalance penalty for surplus
is non-positive (i.e. it is a reward, not a penalty) and constant.

To mitigate the imbalance cost, the wind power producer
can charge/discharge the BESS, so that the net output of
the plant, i.e. that perceived by the market is the combined
production of the wind farm and the BESS. Having a co-
located BESS will have the effect of firming the WPP’s energy
output, and thus giving it access to other markets (e.g. a
capacity market). However, we don’t take any other sources
of revenue into consideration in this setting.

The scope of our work is a high-level analysis that could be
of interest for early-stage project developers or policy makers.
We are interested in looking at infinite-horizon average profits
by considering the steady-state behavior of the model proposed
and performing sensitivity analyses on a number of key param-
eters. To be consistent with this approach, we do not consider
the possibility of using storage for arbitrage, since arbitrage
opportunities cannot exist in steady state in an efficient market.
This approach suggests the assumption of existence of a long-
run equilibrium in the forward market, which depends on many
factors that are not considered in our model, such as long-run
demand behavior and a stabilization of the cost of new capacity
(which in the case of storage, for instance, is actually expected
to continue declining for some years [16]). We do not make
any such strong assumptions. While such an equilibrium may
be far from being reached, this model is a high-level analysis
for which this coarse approximation of reality is sufficient.

We do not specify any particular battery technology. We in-
clude in our analysis the issues of charge/discharge conversion
efficiency and energy dissipation. However, we do not include
the degradation of the battery because of usage and aging in
our model. It has been found that this can be an important
characteristic to take into account in sizing studies [6], so this
could be an interesting feature to add to future versions of our
model, but is considered out of the scope of this paper.
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III. MODEL

A. General description

As mentioned before, the case we study here is a special
case of a day-ahead model. To emphasize the flexibility of
our model and lay the groundwork for a future extension
considering variable prices, we describe first the model of
the day-ahead market allowing for the possibility of variable
prices, and then focus on the special case addressed in this
paper.

1) The market: We consider a day-ahead market in which
the WPP is a price taker, so it commits to produce an amount
qt (in MWh) during market period t at a price pt (in $/MWh),
which is known at the time the commitment is made. During
period t, the actual wind power output of the farm is wt (in
MWh), while rt is the amount energy injected into the BESS
(rt < 0 if the energy is extracted), so that the net output of
the plant is wt− rt. The imbalance is yt = qt− (wt− rt) and
the imbalance penalty charged to the WPP is Ξt = Ξ(yt, pt).
We assume Ξ(·) to be a known, deterministic, time-invariant
function of the imbalance and the energy price.

For the case with constant prices, i.e. the case of forward
contracts, pt is constant and the imbalance is defined by (1).
Note that the negative sign in front of κ′ implies that the WPP
is not penalized for excess injection, but, on the contrary, sells
it on the forward market. To avoid arbitrage opportunities, we
must have κ′ < 1 and κ > 1.

Ξ(yt, pt) =

{
Ξ+(yt, pt) = −κ′ptyt if yt ≥ 0

Ξ−(yt, pt) = κptyt if yt < 0
(1)

, with κ′, κ ≥ 0.
2) The BESS: Let ρc and ρd be the conversion efficiencies

of charge and discharge respectively. Thus, the round-trip
efficiency is ρ = ρcρd. The quantity rt is measured from the
exterior of the BESS, so the energy effectively stored in the
battery is ρcrt (for rt > 0) and the energy effectively extracted
from the battery is −rt/ρd (for rt < 0).

The capacity (size) of the battery is b (in MWh). In order
to determine an optimal size, we need to model the cost of
installing and operating the battery. We express this cost as an
amortized cost c in $/(MWh·h). By doing this, we assume that
the battery is replaced at the end of its lifetime with the same
capacity and at the same cost. It is common to break down
the cost of storage into a cost for the energy storage capacity
and a cost for the inversion capacity. In this model, we do not
consider inversion capacity restrictions; this could be a feature
to include in extensions of our model.

An important factor in BESS is energy dissipation, i.e. the
proportion of energy stored in the BESS that is spontaneously
lost without any charging or discharging performed. This is
usually expressed as a fraction η of stored energy per unit time.
This is inconvenient for our fluid queue model, as described
below. So instead, we model dissipation as a constant leakage.

3) Objective: The profit during time period t is thus Πt =
ptqt − Ξt

(
qt − (wt − rt)

)
. In the previous paragraphs, we

have referred to t as a period for ease of exposition, given
its similarity with standard electricity markets. However, we
propose here a continuous-time model, so t actually, and in
all instances in the remainder of this document, refers to an
instant, and, consequently, the quantities qt, wt, rt are powers
(in MW). Note that the price pt is indeed in $/MWh, so that
our profit Π is an instantaneous profit rate, in $/h.

We are interested in the long-run average profit, as defined
in (2). The expectation is taken with respect to the stochastic
process of interest here, (wt, pt), as described next.

Π = lim
T→∞

E

[
1

T

∫ T

0

Πtdt

]
− cb (2)

4) Sources of uncertainty: We consider two sources of un-
certainty in our model: wind power output and energy prices.
This is done by considering (wt, pt) as a joint continuous-time
stochastic process. In particular, we model it as a continuous-
time Markov chain (CTMC) with a discrete state space S =
W×P , withW and P being the discrete state spaces of wt and
pt respectively. This stylized model allows for a convenient
formulation of limiting distributions, as described in the next
subsection.

There are several examples of modeling wind speed and
wind power output as a Markov chain in the literature, with
applications in simulation of wind data series [17], [18], [19]
but also in long-run analysis [11], [10]. It has been found
that simply performing a max likelihood parameter estimation
can result in a very good approximation of the limiting
distribution, but that a key metric to obtain a more accurate
model is the autocorrelation [20]. In [20], in the context of
co-located storage sizing for robust operation of microgrids,
it is found that Markovian models with an autocorrelation
that poorly reflects that of the original data series can lead
to underestimation of necessary storage by as much as 50%.
Autocorrelation performance can be improved by increasing
the order of the Markov chain, but this increases the size of
the state space exponentially, so that only chains of second
or third order are of practical relevance. In [21], a rolling-
average method is proposed to obtain higher autocorrelation
performance in the lower range (0-6h) without increasing the
size of the state space. More recently, authors have proposed
non-homogeneous Markov chains [22], [19] to more accu-
rately reproduce the autocorrelation of real data series, with
much better results replicating the daily behavior of wind (i.e.
the autocorrelation around integer multiples of 24h). These
results can also be leveraged to capture seasonal changes
of longer duration in the wind distribution. The expected
range of optimal storage sizes should also inform the decision
of how much autocorrelation needs to be captured by the
model. If these sizes lie in the 0-6 hour range, capturing daily
autocorrelation is less crucial than if storage is expected to be
in the 24h+ range.
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The discussion above refers only to the Markovian mod-
elling of wind speed or wind power output and provides
enough justification for our modelling of wind power output
as a CTMC in the constant prices case that is addressed in
this paper. We could find no references in the literature of
modelling wind power production and electricity prices as a
joint CTMC as our general framework proposes. This might
be regarded as an acceptable approximation for the high-
level steady-state analysis considered here, but some additional
justification, including some empirical support, should be
provided when developing that stage of the model. We leave
a more thorough discussion of this for a future work in which
the variable-price version of this model is developed. For
the case considered in this paper, we discuss some empirical
performance of the model in section IV-A3.

5) Optimization model: Putting the previous pieces to-
gether, we are interested in solving the infinite-horizon average
profit optimization problem in (3).

max
qt, rt, b

Π

s.t. b ≥ 0,

qt ∈ [0,W ] ∀t,
qt, rt, b ∈ R ∀t

(3)

W is the plant capacity (in MW). For simplicity, we are
neglecting any ramping charge/discharge limits in this model.
Furthermore, we intend here to model an electricity market,
so we will restrict our analysis to stationary policies where
the bid is a function of the price, i.e. qt = q(pt). We can also
write this as qt = qs when pt = ps, for s ∈ S.

Finally, we will also be interested in stationary charge-
discharge policies rt = r(wt, qt, pt), which we write rt =
r(wt, qt, pt) = rs when (wt, qt, pt) = (ws, qs, ps). We must
note, however, that this definition must be overriden if the
storage is empty or full as summarized below.

rs > 0 & storage full ⇒ rt = 0

rs < 0 & storage empty ⇒ rt = 0

In this paper, we focus on cases where strategic storage
of wind power generation is not attractive because prices and
imbalance penalties are constant in time. For this case, it is
known that the optimal (cost-minimizing) policy is a balancing
policy, i.e. rt = qt − wt [4], [2].

B. Steady-state approach

By the ergodicity of CTMC, and since we are restricting
our analysis to stationary policies, we can express the long-
run average profit of (2) in terms of limiting distributions as in
(4). In words, the long-run average profit is the sum over all
states of the income minus the imbalance penalty, for which
there are two cases: if storage is available, the policy can be
followed; if storage is not available (empty or full), the policy
must be overriden.

Π =
∑
s∈S

(
psqsπs − ψsΞs(qs − ws)

− (πs − ψs)Ξs(qs + rs − ws)
)
− cb

=
∑
s∈S

(
psqsπs − ψsΞs(qs − ws)

)
− cb

=
∑
s∈S

(
psqsπs − ψsκps(qs − ws)+

+ ψsκ′ps(ws − qs)+
)
− cb (4)

, where π = (πs)s∈S is the limiting distribution of the
CTMC (wt, pt) and ψ = (ψs)s∈S is the long-run proba-
bility of storage unavailability (empty or full). The optimal
charge/discharge policy is balancing the output, so qs + rs −
ws = 0 whenever storage is available, and the imbalance
penalty in that case is zero, which justifies the second equality.
The third equality is obtained by plugging in the definition of
the imbalance in (1). π can be easily determined from the
generator of the CTMC (wt, pt). The long-run probability of
unavailable storage ψ can be determined from some results of
fluid queue theory, as shown next.

1) Limiting distribution: Our model corresponds to the
model of a Markov-modulated fluid queue with finite buffer. A
characterization of the long-run distribution of this process can
be obtained through a spectral analysis, which we overview
next. This is based on the presentation in [12], with more
details of the proofs available in [7]. For ease of exposition,
in the following overview we omit the efficiency factor ρ.

Define r = [rs]s∈S , a vector with the discrete values taken
by rt, D = diag(r), a diagonal matrix with r in its diagonal. In
the field of fluid queues, r is called the drift vector. We assume
for now that rs 6= 0∀s ∈ S. The special case with rs = 0 is
considered at the end. Let Q be the infinitessimal generator
matrix of the CTMC and F the limiting distribution of the
level state of the battery, i.e.: F (x, s) = limt→∞ P

(
Xt ≤

x, (wt, pt) = s
)

, F(x) = [F (x, s)]s∈S . Then, it can be shown
[12] that F satisfies the differential equation

dF

dx
D = FQ (5)

with boundary conditions

F (0, s) = 0 if rs > 0

F (b, s) = πs if rs < 0

A spectral solution to these equations can be obtained
introducing generalized eigenvalues λ and eigenvectors u, so
that λuD = uQ. The general solution to (5) takes then the
form

F(x) =

|S|∑
i=1

ai exp(λix)ui
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, where the values of coefficients ai can be found by solving
a linear system from the boundary conditions. The long-run
probability of unavailable storage can then be found as

ψ = F(0) + π − F(b) (6)

In this manner, the long-run probability of unavailable
storage can be found for given r and b. Note, however, that
the method requires solving a generalized eigenvalue problem,
which has three implications of importance for our work. First,
we cannot obtain a closed-form expression of (6) in terms of b
and r, so that numerical calculating approaches are necessary.
Secondly, this function is not convex in general, which makes
our optimization problem non-convex as well. Finally, the
linear system posed by the boundary conditions can be very
ill-conditioned because of the presence of both very large and
very small eigenvalues, which is a major challenge for the
method. We address this in more detail in the description of
the algorithm.

2) Cases with zero drift: If rs = 0 for some state s ∈ S,
then F (x, s) can be expressed as a linear combination of
F (x, j) for states j : rj 6= 0. Thus, for these cases, the
method described above is performed on a reduced system
that includes only states {j : rj 6= 0}. Then those values are
used to find the distribution for the null states. Details are
omitted here, but can be found in the Appendix of [14].

3) Dissipation: We next briefly address the issue of mod-
elling dissipation under our model. As mentioned before, it
is standard to consider that energy dissipates from the battery
at a rate that is a fix multiple of the current storage level.
This would mean that an additional term should be included
in the drift vector: rt = rs − ηxt, where xt is the current
storage level in the battery (in MWh). The addition of this
term makes the drift dependent on the storage level, so that the
spectral analysis performed earlier would be no longer valid.
To avoid this, we model dissipation as a state-independent
constant leakage. So that rt = rs − ηb.

This affects the optimality of the balance policy. Indeed, for
sufficiently large η, it could be more profitable to sell surplus
energy immediately than to store it and have a large proportion
of that lost to dissipation. To simplify our analysis, we make
the following restriction: we make a sensitivity analysis on η
with κ′ = 0 and a sensitivity analysis on κ′ with η = 0, so
that the balance policy is optimal for all these situations.

C. Units

In the previous paragraphs, we defined all quantities in their
appropriate physical units. However, it is more convenient
and illustrative for the purposes of this work to express all
quantities in per unit of power plant capacity and storage
capacity, so we introduce:

w = w̃W q = q̃W b = b̃W

c = c̃pmax p = p̃pmax r = r̃b

, so that w̃, q̃, p̃ ∈ [0, 1], b̃ is in hours of storage of full plant
capacity, and r̃ is in units of [p.u. of b]/h, which is interpreted

as the number of times that the total storage would be charged
starting from an empty state in one hour at full plant capacity.
Equation (4) becomes:

Π

pmaxW
=
∑
s∈S

(
p̃sq̃sπs − ψsκp̃s(q̃s − w̃s)+

+ ψsκ′p̃s(w̃s − q̃s)+
)
− c̃b̃ (7)

It is not hard to check that this change of units does not
affect the spectral decomposition and hence the values of ψ.
In this paper we are interested in the case where the price is
constant, i.e. |P| = 1, ps = pmax ∀s ∈ S and hence p̃s = 1 for
all s. Finally, for readability and ease of notation, the tildes
will be omitted in the remainder of this paper, but we will
always refer to values in per unit.

With these unit changes and simplifications, the optimiza-
tion model (3) is written as

max
q, b

∑
s∈S

(
qπs − ψsκ(q − ws)+ + ψsκ′(ws − q)+

)
− cb

s.t. b ≥ 0,

q ∈ [0, 1]
(8)

D. Solution algorithm

There are two challenges in finding the optimal solution to
our problem. First, the spectral method used for computing the
objective function is numerically unstable for certain values
of r, for which the solution involves a very ill-conditioned
matrix. Using Matlab’s symbolic toolbox allows working with
a degree of precision that reduces this problem. However, this
significantly increases the computation time of the objective
function. This difficulty can be circumvented with heuristic
approaches as described next. First, a computation in normal
precision is tried. If boundary conditions fail to be respected
within a predefined tolerance, the computation is repeated
using the symbolic toolbox. We impose some precision limi-
tations to reduce execution time.

It was observed that the drift vectors that elicit this behavior
are those that include entries with very small absolute value. In
the algorithm proposed in [13], to guarantee obtaining results
within a desired precision, the author imposes the restriction
that entries in the drift vector should have a known infimum,
which is in line with the behavior observed here. We use
the following heuristic: if numeric instability persists after the
previous procedure, a lower threshold is applied to the r vector.
Specifically, all entries with an absolute value relative to the
maximum absolute entry less than a certain threshold rinf are
forced either to 0 or to the threshold, whichever is closer. If
the problem persists, the threshold is increased until a stable
solution is found.

This restriction does not make our solution too limited or
unrealistic, since real charge/discharge equipment often does
have a minimum threshold for operation, because of inverter
and transformer’s limitations, so that working with rinf =
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0.1 is reasonable. A more transparent way of introducing this
heuristic rule would be to include it in the constraints of the
optimization problem. However, this would make our problem
a non-linear mixed-integer program, further complicating it
without much perceived benefit. The more informal heuristic
described above is thus preferred. In a strict sense, enforcing
this limitation implies not using the optimal balancing policy.
However, in the cases where this happens, we disregard the
effect that using the suboptimal policy has on the optimality
of the result.

An interesting alternative to address this numerical difficulty
is using the algorithm proposed by Akar in [15]. This is
discussed in more detail in the following subsection.

The second difficulty is that we have a non-linear, non-
convex function, so that using a gradient descent algorithm
does not provide a guarantee of global optimality. For the
scenario with constant prices, our search space only has a
dimension of 2; it is thus reasonable to start exploring the
search space by means of a grid, to then use the best candidate
as starting point for a finite-difference descent algorithm,
which is the algorithm that was implemented in our tests.

1) Eigenvalue-free algorithm: In [15], Akar and Sohraby
propose an algorithm that allows obtaining the limiting distri-
bution of a Markov-modulated fluid queue without solving
an eigenvalue problem, to get around the problem of ill-
conditioned matrices present in the spectral solution. They
exploit a decomposition of the limiting distribution in what
they call a constant, stable and antistable subsystem. This
decomposition allows posing boundary conditions as a linear
system without exponentially growing terms, which is thus
better suited for numerical solution. Although they propose
it in the context of communication networks, their algorithm
does not assume any special structure for the driving Markov
process or the drift vector, and can thus be readily used for
our framework as well.

We implemented this algorithm but obtained mixed results,
which are presented in Section IV. In consequence, although
this method seems promising for a continuation of this project,
in the results shown in this paper we use the heuristic approach
described earlier.

IV. RESULTS AND DISCUSSION

A. Model data estimation

1) Wind model: To obtain the values of the generator matrix
that defines the CTMC, the methodology outlined in [21]
is followed. The methodology consists in first passing the
wind power output through an averaging window of one hour,
then discretizing the output with N = 15 levels, and finally
performing a max-likelihood estimation on the resulting data
sequence, i.e. finding the transition probabilities from counting
transitions in the sequence. As in [10], the wind data available
in [23] was used.

2) Reference parameters: We perform sensitivity analyses
on the other model parameters. Reference values are given in
Table I. We comment on the choice of the reference cost of
storage in the following paragraphs.

TABLE I
REFERENCE VALUES FOR SENSITIVITY ANALYSES

Parameter Value Parameter Value

κ 1.35 ρ0 0.95
κ′ 0 ρ1 0.95
cs 0.005 η 0

3) Empirical validation: To provide an empirical reference
for comparison with our model, we use the same data series to
solve the ex-post sizing and contracting optimization problem
9.

max
q, b

g(q, b)

s.t. b ≥ 0,

q ∈ [0, 1]

(9)

, where g(q, b) is a function that computes the ex-post average
profit over the time available in the data series for contract
quantity q and storage size b. The value of function g is
computed by the algorithm below, where we use the fact that
the the balancing policy is known to be optimal.
Require: q, b,w, κ, κ′, ρ,∆
w{Wind power output data series}
∆{Wind power output data series sampling period}
T ← length(w)
x0 ← 0 {Initial state of charge}
x, xprev {Current, previous state of charge}
Π {Average profit}
Π← q × T ×∆
for t = 1 to T do

if xprev + ∆t(wt − q) < 0 then
empty← true{empty storage}

else {Not empty}
empty← false

end if
if xprev + ρ∆(wt − q) > b then
full← true{surplus}

else {No surplus}
full← false

end if
if full then

Π← Π + κ′max{∆(wt − q)− (b− xprev)/ρ, 0}
end if
if empty then

Π← Π− κmax{0,∆(q − wt)− (xprev)}
end if
if wt − q < 0 then
x← max{min{xprev + ∆(wt − q), b}, 0}

else
x← max{min{xprev + ρ∆(wt − q), b}, 0}

end if
xprev ← x

end for
Π← Π

T∆
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return g(q, b) = Π

The results of the model (8) and (9) are shown in Figure
1a and 1b. The results themselves are discussed in the next
paragraphs; in terms of model validation, it is worth men-
tioning that there is a good level of agreement between the
curves given by the model and the empirical ex-post best. An
interesting continuation of this work would be to perform a
similar analysis using a non-homogeneous Markov chain to
model the wind power output as in [22], [19].

B. Value of storage

As a first step before doing sensitivity analyses, we are
interested in observing the value of storage for the WPP in the
setting described. To do this, we fix b at different values and
solve (8) and (9) for q only to find the optimal commitment
and corresponding profit. The profit is compared to the profit
that would be obtained from a feed-in-tariff contract with the
same price. In the setting that we consider here, there is no
access to markets other than energy, so this profit is an upper-
bound reference for comparison.

We can make four important observations from the results
in Figure 1. First, as expected, even with unlimited storage,
recovering feed-in-tariff profits is not possible, which is ex-
plained by efficiency losses in storage/discharge. Secondly, it
is also worth mentioning that in our model, we do not find an
optimal bidding function having the form of an optimal fractile
of wind power production. Observe that since the support W
is discrete, such a function would be step-shaped, while our
optimal curve is not.

Third, in line with the results of other authors under different
structural assumptions [4], [2], the value of storage in the
reference case studied has diminishing marginal profit. This
allows identifying two quantities of interest. First, the marginal
profit at b = 0 gives the critical amortized cost of storage: if
storage costs more than this quantity, it is not worth having
co-located storage. The second quantity is the optimal size; for
an amortized cost of storage c, the optimal size of storage is
the quantity for which the marginal profit is equal to c. These
results justify our choice of a descent algorithm to find the
optimal storage size.

Finally, as expected, expected imbalances are reduced as
storage sizes grows without limit. It is worth observing,
however, that positive imbalances increase for the lowest range
of storage sizes. This can be explained by the fact that in our
model for the given reference values, the optimal contracting
strategy in absence of storage is to commit the entire capacity
of the plant, which eliminates positive imbalances. As storage
drives the optimal commitment down, positive imbalances ap-
pear. With enough storage, these imbalances are then brought
down too.

For the reference case shown here, the critical cost is found
at co = 0.0193, which for a reference price of energy of
60$/MWh, corresponds to an amortized cost of 10.14$/kWh-
yr. Note that this is a whole order of magnitude below the
reference cost of 100$/kWh-yr for 2020 [24], meaning that

under this setting and the reference values used, installing co-
located storage is not profitable without access to additional
revenue streams (such as a capacity market or arbitrage).
Even taking into account that the cost of storage is declining
rapidly, a tenfold reduction is beyond what we should expect
to see in the near future. So additional revenue streams or a
different setting need to be in place for co-located storage to
be attractive.

In fact, in our setting, the WPP is not sufficiently exposed to
uncertainty to justify paying for expensive storage. Indeed, the
WPP is already covered against prices higher than κp by the
pay-as-demanded forward contract, so that further risk hedging
via storage is only modestly attractive. In Figure 2, we see that
as the coverage cap κ is increased and the WPP is exposed
to higher penalties, the critical cost co at which it is willing
to invest in storage also rises. However, the pay-as-demanded
forward contract would need to be available at a premium of
several times the WPP’s normal selling price to get anywhere
near the critical cost.

A setting in which the WPP is exposed to much higher
penalties is thus necessary for the co-located investment to
be attractive, i.e. a setting with variable prices, which is the
natural continuation of the work presented in this paper.

Finally, we obtain the identical curves in Figure 1 using the
spectral method described in Section III-D and the alternative
algorithm of [15], with the latter having a much quicker execu-
tion. However, this agreement of results did not hold for some
other values of the parameters, such that using that method
for sensitivity analyses was not possible. Indeed, it seems
that for some values of the parameters that were varied, the
alternative algorithm can return invalid limiting distributions
(outside [0, 1]). This behavior has not been investigated any
further but could be of interest for future extensions of the
model.

C. Sensitivity analyses

As we mentioned, the main scope of the model proposed
here is performing sensitivity analyses at a high level, such as
during a feasibility study of a project, or for policy evaluation.
In this section, we show the results of some of these analyses.
Despite the discussion of the previous section, sensitivity
analyses to changes in some key parameters are of interest,
since they provide some understanding regarding the interplay
between some key quantities which a project developer could
be interested in evaluating in early stages of an investment.

We are interested in observing the behavior of the model
as some key parameters are modified. The current cost of
storage, c ≈ 0.2 is above the critical cost for the reference
case, so the optimal size would be 0, and the behavior of the
results to changes in other parameters would be hidden. To
avoid this, we take a reference storage cost of c = 0.005.
Although unrealistically low, it allows observing the behavior
of the optimal size as some parameters of interest change. This
could also be seen as the case of co-located storage with access
to multiple revenue streams (e.g. capacity market), and only
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Fig. 1. (1a): Long-run average profit in excess of no-storage profit for different storage sizes. The feed-in-tariff benchmark is equal to the average output
of the power plant (price is normalized to 1). (1b): Optimal energy pledge for different storage sizes. (1a) and (1b) correspond to the reference values of all
parameters. (1c): Expected positive and negative imbalance for different storage sizes.
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Fig. 2. Critical storage cost for different values of shortfall penalty factor.
Critical storage cost is the slope of the profit curve vs. storage size at b = 0.

a portion of the full cost of the BESS needs to be recovered
via risk mitigation in forward markets.

1) Forward contract prices: The behavior is exactly as
intuition would dictate: larger storage becomes more attractive
as the penalty for energy shortfall becomes higher, i.e. as the
exposure to high penalties increases (Figure 3). The change
with respect to the price of the pay-as-generated forward
contract (Figure 4) shows a more interesting dynamic. As κ′

becomes positive and the value of surplus energy increases,
it becomes less undesirable to have excess energy, so that the
optimal commitment q decreases. This in turn leaves room
for increasing the optimal storage size, as more energy is
available for accumulation. After a certain point, however,
the price of the pay-as-generated contract is so close to the
price of the long-term fixed contract that the latter becomes
less and less attractive, so that the commitment decreases
significantly. With a very low commitment in the long-term
contract, the motivation for investing in storage also disappears
progressively, leading to a smaller optimal storage size.

2) Efficiency and dissipation: The behavior when the
round-trip efficiency and dissipation vary is in line with our
expectation. As the system becomes more inefficient, storage
becomes less attractive. Figure 6 shows this behavior as
dissipation varies. For the round-trip efficiency parameter ρ,
the relation between optimal size and efficiency appears to be
close to linear (Figure 5).

V. CONCLUSION AND NEXT STEPS

In sum, we are proposing here a model to perform a high-
level steady-state analysis of the value of co-located storage
for a wind power producer that participates in the electricity
market through long-term forward contracts. In particular,
we assess the optimal size of storage and optimal quantity
to sell in forward contracts under different values of key
parameters regarding contract prices and storage efficiency.
According to the model presented here, a setting such as the
one considered in this paper does not expose the producer to
enough uncertainty in income for storage to be attractive at
current prices. This is likely to be different under a setting
with variable prices, which is the natural extension of the
model presented here, and what we intend to develop in future
research.
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Fig. 5. Sensitivity to changes in round-trip efficiency ρ. (5a): Profit gain with respect to no-storage profit (5b): Optimal storage size (5c): Optimal quantity
that should be sold in long-term fixed contract.
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